skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Astolfi, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Astolfi, Alessandro (Ed.)
    Q-learning has become an important part of the reinforcement learning toolkit since its introduction in the dissertation of Chris Watkins in the 1980s. In the original tabular formulation, the goal is to compute exactly a solution to the discounted-cost optimality equation, and thereby obtain the optimal policy for a Markov Decision Process. The goal today is more modest: obtain an approximate solution within a prescribed function class. The standard algorithms are based on the same architecture as formulated in the 1980s, with the goal of finding a value function approximation that solves the so-called projected Bellman equation. While reinforcement learning has been an active research area for over four decades, there is little theory providing conditions for convergence of these Q-learning algorithms, or even existence of a solution to this equation. The purpose of this paper is to show that a solution to the projected Bellman equation does exist, provided the function class is linear and the input used for training is a form of epsilon-greedy policy with sufficiently small epsilon. Moreover, under these conditions it is shown that the Q-learning algorithm is stable, in terms of bounded parameter estimates. Convergence remains one of many open topics for research. 
    more » « less